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Abstract— Energy management in Hybrid Electric Vehicles (HEV) has been actively studied recently because of its potential to 

significantly improve fuel economy and emission control.  Because of the dual-power-source nature and the complex configuration and 

operation modes in a HEV, energy management is more complicated and important than in a conventional vehicle.  Most of the existing 

vehicle power optimization approaches do not incorporate knowledge about driving patterns into their vehicle energy management 

strategies. Our approach is to use machine learning technology combined with roadway type and traffic congestion level specific 

optimization to achieve quasi-optimal energy management in hybrid vehicles. In this series of two papers, we present a machine 

learning framework that combines Dynamic Programming with machine learning to learn about roadway type and traffic congestion 

level specific energy optimization, and an integrated online intelligent power controller to achieve quasi-optimal energy management in 

hybrid vehicles. These two papers cover the modeling of power flow in HEVs, mathematical background of optimization in energy 

management in HEV, machine learning algorithms and real-time optimal control of energy flow in a HEV. 

This first paper presents our research in machine learning for optimal energy management in HEVs. We will present a machine 

learning framework, ML_EMO_HEV, developed for the optimization of energy management in a HEV, machine learning algorithms 

for predicting driving environments and generating optimal power split for a given driving environment. Experiments are conducted 

based on a simulated Ford Escape Hybrid vehicle model provided by Argonne National Laboratory's PSAT (Powertrain Systems 

Analysis Toolkit). Based on the experimental results on the test data, we can conclude that the neural networks trained under the 

ML_EMO_HEV framework are effective in predicting roadway type and traffic congestion levels, in predicting driving trend and in 

learning optimal engine speed and optimal battery power from Dynamic Programming. 
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I. INTRODUCTION 

 

Development of new vehicles with high fuel efficiency and less emissions has become a new focus of research in the 

automobile industry due to growing energy and environmental concerns. Hybrid Electric Vehicles (HEVs) have emerged as a 

promising advanced technology to improve fuel economy while meeting the tightened emissions standards. The improved fuel 

economy of HEVs is achieved by optimizing the architecture and the various devices and components of the vehicle system, as 

well as the energy management strategy that is used to efficiently control the energy flow through the vehicle system. In this 

research we focus on the issue of optimizing vehicle energy management to improve fuel economy. 

 An HEV combines two or more energy sources, e.g., internal gasoline combustion engine (ICE) and battery, in its propulsion 

system to move the vehicle. With the use of a secondary power source, an HEV uses a smaller and more efficient engine in its 

drivetrain. Because of the dual-power-source nature, the design and implementation of an HEV system is a challenging problem. 

The power control strategy that splits the power between chemical fuel and stored electricity takes an important role in the overall 

fuel efficiency and amount of emissions. The goal of the power control strategy is to minimize the total fuel consumption and 

emissions without sacrificing vehicle performance, safety, and reliability. In order to meet these challenges, it is very important to 

optimize the architecture and the various devices and components of the vehicle system, as well as the energy management 

strategy that is used to efficiently control the energy flow through the vehicle system.   

Current existing real-time power control strategies are largely based on heuristic control rules/fuzzy logic for control algorithm 

development. Wipke et al. used a strategy that adopts a rule-based structure in the control logic by defining a set of thresholds 

through an optimization process [1].  Jeon et al. proposed a rule-based multi-mode driving control strategy for parallel HEVs that 

uses an algorithm that is optimized for a recognized driving pattern [2]. Zhu et al. implemented a fuzzy rule-based power 

controller, in that the fuzzy rules are extracted by studying the optimization result for the given cycle [3]-[4]. Schouten et al. 

implemented a load-leveling and charge-sustaining strategy by using a fuzzy logic technique [5]. These heuristic rules/fuzzy 

logic-based strategies mostly stem from engineering intuition, which is sometimes far from the actual optimal solution. 

An alternative approach is to apply an optimal control method such as linear programming [6], optimal control [7], and 

especially dynamic programming (DP) [8]-[10] to the power distribution and management problem. In general, these techniques 

require the knowledge of the entire drive cycle in advance. Therefore they do not offer an online solution. Furthermore, an 

optimal power split solution for a given specific drive cycle might be neither optimal nor charge-sustaining under other cycles. To 

address these issues, a number of techniques have been proposed.  Paganelli et al. used an instantaneous optimization method that 

reduces the problem to a minimization of equivalent fuel consumption at each time instance [11]. If only the present state of the 

vehicle is considered, the optimization of the operating points of the individual components can still be beneficial, however the 
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benefits will be limited [11]-[13]. Lin et al proposed a stochastic dynamic programming (SDP) method in an attempt to obtain the 

optimization for general driving conditions, rather than a specific driving cycle, using power demand probability [14].  

Recent research has shown that the current driving environment and the driver's driving style have a strong influence over a 

vehicle's fuel consumption and emissions [15]-[19]. Driving patterns exhibited by a real world driver are the product of the 

instantaneous decisions of the driver to respond to the (physical) driving environment. Specifically, varying roadway type and 

traffic congestion level, driving trends, driving styles, and vehicle operating modes have various degrees of impact on fuel 

consumption. However most of the existing vehicle power optimization approaches do not incorporate knowledge about driving 

patterns into their vehicle energy management strategies. Our approach is to use machine learning technology combined with 

roadway type and traffic congestion level specific optimization to achieve quasi-optimal energy management in hybrid vehicles. 

It is our contribution to use the current driving environment to predict the future driving conditions, train an online energy 

management system using machine learning to emulate the optimal solutions generated by Dynamic Programming (DP) for 

specific roadway types and traffic congestion levels, and generalize the optimal power settings to real world vehicle operation 

based on the predicted real-time roadway types and traffic congestion levels.  

This paper, the first in a series of two, presents our research in the development of a machine learning framework, 

ML_EMO_HEV, for the optimization of energy management in an HEV. In the ML_EMO_HEV framework, algorithms are 

developed to learn energy optimization based on long and short term knowledge about the driving environment. The long term 

knowledge about the driving environment is represented by the type of the drive cycle the driver is in for the next few minutes. 

The short term knowledge is the driver's immediate reaction to the driving environment at each time instance. In the second paper 

of the series, we will present the intelligent online energy controller developed under the framework of ML_EMO_HEV and 

trained by the machine learning algorithms presented in this paper to minimize the fuel consumption while maintaining vehicle 

performance. 

The paper is organized as follows.  Section II introduces an HEV model and energy optimization in an HEV. Section III 

presents the machine learning technologies we developed for optimal vehicle energy management.  Section IV concludes this 

paper.   

II. ENERGY OPTIMIZATION IN AN HEV 

The energy management problem for HEVs is a dynamic optimization problem. In the discrete time format, the dynamics of an 

HEV system can be defined by the state transition equation:  

)),(),(()1( ttutxftx 
                                                     

(1) 
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where )(tu  is the vector of control variables such as engine speed, engine power and battery charging or discharging power, and 

)(tx is the state variable in the HEV system, which is represented by the battery state of charge level. The HEV system can be 

interpreted as taking the action of control variables at time t, )(tu at the given state )(tx  and transforming the vehicle to the next 

state ),( ttx  0t . The energy optimization of the HEV can be formulated as follows: 

),(min uxF
u

 subject to 0),( uxC                                  (2) 

where ),( uxF  is the objective function (or cost function), ),( uxC  is the constraints on variables. Because our goal of 

vehicle energy management is to minimize the total fuel cost over a given drive cycle, the objective function ),( uxF  

represents the accumulated fuel cost: 

  tttutxratefueluxF
N

t


1

)),(),((_),(                                         (3) 

where N is the horizon or number of times that the control is applied,  )( ),...,1( Nxxx  and  )(),...,1( Nuuu .  The 

energy optimization problem is solved using Dynamic Programming (DP) based on the dynamics of the power split HEV. 

 

II.1 Power flow in an HEV vehicle  

Figure 1 shows power flow in a power split HEV configuration, in which conventional definitions of signs for motor, generator, 

and battery power are represented by the arrows. Pgen, Pgen_e, Pmot, Pmot_e, Pbatt and Ps  can flow in both directions, where Pgen is 

the (mechanical) generator power, Pgen_e is the electrical generator power, Pmot is the (mechanical) motor power, Pmot_e is the 

electrical motor power, Pbatt is the power output of the battery and Ps  is the internal battery power.  A power flows in the 

direction of an arrow is positive, otherwise it is negative. When the power of an electric machine flows in the positive direction, it 

indicates that the electric machine is motoring; otherwise, is generating. 

The output power from the engine, Peng can be split into the power at ring gear, Pring and the power at generator, Pgen.  The ring 

gear power, Pring, represents the mechanical power flow path from the engine to the ring gear to the final drive. The generator 

power, Pgen, represents an electrical path from the engine to the generator to the motor to the final drive. The split of the engine 

output power between the mechanical path and the electrical path is accomplished by controlling the engine speed with the 

generator. The electrical motor draws the power from the battery and propels the vehicle. The two power paths provide 

propulsion power to the final drive to move the vehicle forward simultaneously or independently [21].  

The battery used in this research is a Nickel Metal Hydride (NiMH) battery. As shown in Figure 1, the battery model is 

represented by a battery efficiency component and an energy storage component. The battery power is defined as positive when it  
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Figure 1. Power flow in a Split HEV configuration with arrows indicating positive power. 

 

is charging and as negative when it is discharging. The battery efficiency component determines the energy loss during the 

charging and discharging in the battery. The internal battery power, Ps is defined as Ps(t) =Voc(T,SOC) *I(t), where Voc is the open 

circuit voltage in the battery model, T is the battery temperature, and I is the battery current. The current, I is calculated by 
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1 , where Rresist is the battery internal resistance. Based on the equation above, the open 

circuit voltage Voc varies depending on SOC and the temperature. But in reality, Voc in NiMH batteries varies only a little within 

the SOC range 20~80% [22].  

The energy storage block keeps track of the energy level in the battery. The charge level of the battery, Q is represented by the 

integration of the current, I  

kkIQtQ

t

k

 


)()0()(
0

.                                  (4) 

Because the proposed battery model is power based and available SOC range is 40~60%, the battery energy level, E(t) [J] is used 

as a state variable in the energy control problem. The battery energy level, E(t)  is defined as below 






t

k

s kkPEtE
0

)()0()( .                                    (5) 

 

The power split HEV system allows two degrees of freedom in energy optimization, which we can represented by two control 

variables, the engine speed, ωeng and the battery power, Pbatt. The control variables at time t are defined as 

))(),(()( ttPtu engbatt  . Once the values of two control variables are obtained, then the speed and power of the other components 

(the engine, the motor, and the generator) can be determined based on the kinematics and dynamics of the power split HEV 

system. The optimization is subject to the individual components constraints in the system: engine, generator, motor and battery. 

The operating range of each component is limited in the energy optimization. The inequality constraints for each component are 

introduced to the limit minimum and maximum power flow defined as follows: 
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 )()( 0    , (t))(0 max_engmax_ ttPtP engengeng                                       
],1[ Nt

 

 )( )()(   ),()()( gen_maxgenmin_max_min_ ttttPtPtP gengengengen              
],1[ Nt

 

)( )()(    ,)()()( mot_maxmotmin_max_min_ ttttPtPtP motmotmotmot               
],1[ Nt

 

)()()( max_min_ tPtPtP battbattbatt 
                                                                             

],1[ Nt
       (6) 

where P*_min is the minimum power of the corresponding component, and P*_max
  

is the maximum power of the corresponding 

component. Similarly, ω*_min is the minimum speed of the corresponding component, and ω*_max is the maximum speed of the 

corresponding component.  

 In order to create a well-posed problem, an end point constraint is imposed on the state variable, E, requiring the energy level 

at the end of the given drive cycle to be the same as the initial energy level 

.0)()0()(
1





N

k

s kkPENE                                  (7) 

By combining these inequality constraints and the end point constraint with the objective function we can ensure that the engine 

speed, the battery energy level, engine power, generator power and motor power are all within their corresponding boundaries in 

the optimal solution.  

In the HEV energy management problem, the objective of DP is to find the optimal sequence of control variables, 

 )(),...,1( Nuuu , that minimizes the accumulated fuel cost over a given drive cycle. Since the objective is to minimize 

fuel cost, the calculation of the instantaneous fuel consumption based on the given control variables is critical. To this end, a 

nonlinear static engine efficiency map provided by the manufacturer is used to describe the relationship between fuel 

consumption and the state and control variables.  Specifically, the instantaneous fuel cost is a function of engine speed and engine 

power, denoted as Φeng (Peng, ωeng). Assuming the moment of inertia of the engine is negligible and the vehicle speed, sv , vehicle 

electrical load, PL , and the driver’s power demand, Pdrive_sh are known, the instantaneous engine power Peng for the given control 

variable ))(),(()( ttPtu engbatt   can be calculated based on the kinematic equations of the HEV as follows: 

Step 1: Calculate the motor speed, ωmot given the current vehicle speed sv   

ratiofd
rwheel

vs
ringmot _

_


                       
        (8)           

where wheel_r is the effective wheel radius and fd_ratio is the final drive ratio.  

Step 2: Calculate the generator speed, ωgen and the sun gear speed, ωsun,  

sun

ring

mot

sun

sunring

engsungen
N

N

N

NN
 




                                                                (9) 
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 where Nsun is number of teeth of the sun gear and Nring is number of teeth of the ring gear.  

Step 3: Calculate motor power loss, Pmot_loss and generator power loss, Pgen_loss. These power losses depend on the motor and 

the generator efficiencies given motor and generator torque and speed.  

Step 3.1: Calculate the desired engine power, *

engP at steady system operation using the given battery power Pbatt, the driver’s 

power demand, Pdrive_sh and the electrical load as:   

Lbattshdriveeng PPPP  _

* .                                        (10) 

This desired engine power, *

engP  is the engine power at the steady system and it is used to calculate the generate 

torque τgen and motor torque τmot at the next step. 

Step 3.2: Calculate the generator torque τgen and motor torque τmot. The desired engine torque, *

eng
 
is first calculated by 

engengeng P  /**  . Then the estimated generator torque, τgen, and ring gear torque, τring, are calculated as follows: 

**      , 
engeng

sunring

ring

ring

sunring

sun
gen

NN

N

NN

N






 .                             (11) 

The motor torque, τmot is calculated based on the fact that the driver’s power demand, Pdrive_sh,  in the power split 

HEV is equal to the power at ring gear, Pring plus the motor power, Pmot , i.e. 

motmotringmotmotringringmotringshdrive PPP  )(_ 
. 

ringmotshdrivemot P   )/( _                              (12) 

 Step 3.3: Using efficiency maps of the generator and the motor, calculate generator power loss, Pgen_loss and motor power 

loss, Pmot_loss as follows: 

 
),(_ gengengenlossgenP 

,  
),(_ motmotmotlossmotP 

                  (13) 

 where ηgen is a generator efficiency map and  ηmot is a motor efficiency map.   

Step 4: Calculate the final engine power, Peng:   

.___ Llossgenlossmotbattshdriveeng PPPPPP 
                        (14) 

With two control variables, battery power, Pbatt and engine speed, ωeng the corresponding engine power is calculated using 

equations (8)-(14). Then the instantaneous fuel rate can be expressed as a function of the control variables 

))(),(()( ttPtu engbatt    as below:  

Φeng (Peng(t), ωeng(t)) = ))(),(|)(),((_ _ tPtPttPratefuel Lshdriveengbatt   
.                                                                      (15) 

The objective function, ),( uxF for the power split HEV optimization is then expressed in equation (16). 





N

t

Lshdriveengbatt PtPttPratefueluxF
1

_ )),(|)(),((_),(                                                                    (16) 

 

II.2. Energy Optimization in an HEV using Dynamic Programming 
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The energy optimization problem in an HEV for a given drive cycle, V(t),  can be considered as a problem of optimization of a 

sequence of dynamic states. Dynamic Programming (DP) is used to find the optimal control variables at every time step of the 

drive cycle as shown in equation (17). 





N

t

Lshdriveengbatt
Pu

PtPttPratefueluxF
engbatt 1

_
,

)),(|)(),((_min),(min 


                             (17)  

where the driver's power demand, Pdrive_sh (t) is a function of V(t).  The sampling time, t  for the HEV control problem is 

selected to be 1 second because the SOC changes slowly and 1 second sampling time is sufficient. The DP optimization algorithm 

is a multi-step decision process. Based on the principal of optimality, DP finds the sequence of optimal battery power, Pbatt(t), and 

engine speed, ωeng(t), values that minimize the total fuel consumption over the entire drive cycle V(t) while satisfying all 

constraints.  In implementation, we build a cost to go matrix, R, (see Figure 2) based on the battery energy level, E, and engine 

speed, ωeng, in the temporal domain. The two control variables, Pbatt and ωeng, and the state variable, E, are quantized into grids.  

In Figure 2, the engine speed is discretized into 31 different engine speeds and is labeled as an engine index i, i=1,…, 31.  Here 

engine index 1 = 0 radius/sec and engine index 31 equals the maximum engine speed. 

Cost matrix R

time(Second)

E
n
e
rg

y
 L

e
v
e
l,
  

E

engine index=1

engine index=2

engine index=31

Possible Path

Time Direction of Calculation
 

Figure 2. Projection of cost matrix R along the driving cycle. 

 

The cost matrix, R, with state entries (E, ωeng ) keeps track of the minimum fuel cost from the current time, t, to the end of the 

given drive cycle for each combination of states. Then, according to Bellman’s principle of optimality, the optimal decision at the 

t
th

 step is made based on the formula below: 

, if   ,0))(),(,( NtttEtR eng   

]1,,1(  ))],(),(|)(),((_))1(),1(,1([min

))(),(,(

,
 NttPtPttPratefuelttEtR

ttEtR

Ldriveengbatteng
P

eng

sh
engbatt







                   (18) 

subject to   

)()()( max_min_ tPtPtP battbattbatt  , )()()( max_min_ ttt engengeng   , RttEt eng ))(),(,(  , .))1(),1(,1( RttEt eng          
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The recursive equation is solved backwards from t =N to 1 to get the optimal solution. The sequences of optimal battery power, 

Pbatt, and optimal engine speed, ωeng, that minimizes the total fuel consumption are given afterwards by starting at E(1) and 

following the path of minimal cost stored in R.  

The minimization of the overall fuel consumption through the appropriate split of mechanical power from the engine and 

electrical power from the battery is the most critical part in HEV energy management. Varying the power split ratio between the 

mechanical and electrical paths throughout the drive cycle can result in significantly different fuel economy. The HEV model 

under our study is a power split power train system, which is used in both Ford Escape hybrid and Toyota Prius. The power train 

of power split HEV consists of an engine, generator, motor, battery and planetary gear set [20-21].  

In the power split HEV system, two power sources are connected to the wheels through a planetary gear set. One power source 

is the engine, and another is the battery. The combination of an engine and a generator can provide power to the driveline either 

through an electrical path, a mechanical path or through a combination of the two. The combination of battery, motor, and 

generator provides power to the driveline using the battery power. Depending on the operation mode, either the engine or the 

motor or both can provide the traction power to the drivetrain. During vehicle deceleration, the regenerative braking power is 

captured to charge the battery. In the power split HEV powertrain, the planetary gear set is the key device that connects the 

engine, generator, and motor to form a power split device. Due to the kinematic property of the planetary gear set, the engine 

speed can be decoupled from the vehicle speed [21].  This flexibility in the power split HEV system is one of degrees of freedom 

that can be exploited in the optimization. The focus of this research is the development of machine learning technology to 

optimize energy consumption over a drive cycle with two control variables, battery power and engine speed, or engine power and 

engine speed. The proposed machine learning algorithms require the use of a high fidelity vehicle system modeling and 

simulation program, such as PSAT (Powertrain Systems Analysis Toolkit), to build an authentic vehicle model, V, of particular 

interest.   

III. MACHINE LEARNING OF OPTIMAL POWER CONTROL IN AN HEV 

The DP optimization of the power split system described in section II assumes that the entire drive cycle V(t), t =1,…, N, is 

known a priori. However, since knowledge of the future driving speed is not known during real world driving, we cannot directly 

apply the DP optimization approach in an online energy management solution. Instead, our approach is to predict the driving 

condition in the near future that can affect the vehicle energy management and use this information to calculate and apply the 

optimal energy management solution. We developed a machine learning strategy to learn the optimal power split settings for a set 

of standard drive cycles and then generalized the knowledge to online energy management through neural learning. Figure 3 
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illustrates the proposed machine learning framework, ML_EMO_HEV. It contains two major machine learning processes: 

machine learning for driving environment prediction and machine learning for optimal energy management. Specifically, the 

framework first uses a neural network to model the road environment of a driving trip as a sequence of different roadway types 

and traffic congestion levels such as local, freeway, arterial/collector, etc., augmented with different traffic congestion levels.  

This part of the framework uses an additional neural network to model the driver's instantaneous reaction to the driving 

environment. Then, based on the current predicted roadway type and traffic congestion level and driving trend, the framework 

uses an additional set of neural networks to emulate the optimal energy management strategy as dictated by DP for the current 

conditions, in a way that can be implemented in an online environment.   

 

III.1 Machine learning of the driving environment 

 

A.  Neural learning for prediction of roadway types and traffic congestion levels 

To represent real world driving conditions, Sierra Research, Inc. has developed a set of 11 standard drive cycles presented in 

[23]-[24], called facility-specific (FS) cycles. These cycles represent passenger car and light truck operations over a broad range 

of facilities and congestion levels in urban areas. In this research we use this set of 11 FS cycles as the standard measure of 

roadway types and traffic congestion levels. For the convenience of description we label these 11 FS cycles as R1,…, R11.  

 

 

Figure 3.  ML-EMO-HEV: a computational framework for machine learning of optimal energy management in HEV. 
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TABLE I 

STATISTICS OF 11 FACILITY SPECIFIC DRIVE CYCLES  

Drive Cycle Vavg (m/s) Vmax (m/s) Amax (m/s2) Length (sec) 

Freeway LOS A: R1 30.29 35.54 1.02 399 

Freeway LOS B: R2 29.94 35.01 1.30 366 

Freeway LOS C: R3 29.74 35.19 1.52 448 

Freeway LOS D: R4 29.16 34.66 1.30 433 

Freeway LOS E: R5 25.56 33.26 1.79 471 

Freeway LOS F: R6 14.58 28.53 1.79 536 

Freeway Ramps: R7 15.46 26.90 2.55 266 

Arterials LOS A-B: R8 11.08 26.32 2.23 737 

Arterials LOS C-D: R9 8.58 22.12 2.55 629 

Arterials LOS E-F: R10 5.18 17.83 2.59 504 

Local : R11 5.77 17.11 1.65 525 

 

Table I shows the most recent definition of these roadway types and traffic congestion level [24] along with the labels we 

assigned, where Vavg is the average vehicle speed, Vmax is the maximum vehicle speed, and Amax is the maximum acceleration. The 

11 drive cycles are divided into four categories of roadway types and traffic congestion levels, freeway, freeway ramp, arterial, 

and local. Two of the categories, freeway and arterial, are further divided into subcategories based on a qualitative measure called 

level of service (LOS) that describes operational conditions within a traffic stream based on speed and travel time, freedom to 

maneuver, traffic interruptions, comfort, and convenience. Six types of LOS are defined with labels, A through F, with LOS A 

representing the best operating conditions and LOS F the worst. Each level of service represents a range of operating conditions 

and the driver’s perception of those conditions [24]-[25].  

With the above definition of standard drive cycles, the problem of optimal vehicle energy management is formulated as 

follows. Assume that at any time t for a given drive cycle DC(t), (t [0, te], where te is the ending time of the drive cycle), the 

vehicle is operating according to one of the 11 roadway types and traffic congestion levels, Ri, i = 1, …, 11. These roadway types 

and traffic congestion levels will form the basis for calculating the optimal energy management strategy using DP and will also be 

used as the basis for the online neural network implementation of the DP emulation.   

We formulate the problem of roadway type and traffic congestion level prediction as follows. Let RT[t] be the roadway types 

and traffic congestion levels the driver needs to go through to complete his trip, with t = 0, 1, …, tc, …, te where tc is the current 

time instance, and te is the time when the trip ends. At any given time tc, RT(tc )   { Ri | i = 1, …, 11}. We will predict the 

roadway type and traffic congestion level in the near future based on the short term history of the driver during the trip.  

In order to predict the roadway type and traffic congestion level at time tc, we use the driving speed in the segment [tc - ΔWRT, 

tc].  Here the positive value ΔWRT is the window size of the segment used for making the roadway type and traffic congestion 

level prediction. The prediction is made at time steps, k
rtt , k = 1, 2, … and is used for calculating the optimal energy 

management strategy over the time period [tc, tc+ rtt ]. The time interval over which the prediction is made is 
rtt .  Figure 4 
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illustrates these two parameters on the speed profile of the UDDS drive cycle. The x-axis represents the time during the drive 

cycle and y-axis represents the vehicle speed in miles per hour.  For purpose of illustration, the segments shown in Figure 4 have 

an equal size of ΔWRT = 150 seconds and a time step of 
rtt  = 100 seconds.  Please note that ΔWRT = 150,

rtt  = 100 seconds are 

chosen here only for the clarity of the illustration.  In reality, as we will show, 
rtt  should be much smaller than 100 seconds. 

The two parameters are important for the accuracy of the prediction and real-time implementation. Since features 

characterizing road types and traffic congestion levels are extracted from the speed profile of the vehicle in the time interval [tc -

ΔWRT, tc], if ΔWRT is too small, the segment may not contain sufficient information. If ΔWRT is too big, the segment may contain 

obsolete information. Based on our extensive study on these two parameters [26], ΔWRT =50 seconds and Δtrt=1 second are 

chosen. Our study clearly showed that systems uses Δtrt=1 give significantly better performances over the larger time intervals. 

ΔWRT = 50 is chosen because it gives shorter delay at the beginning of the drive cycle and is computationally more efficient, 

which is important for online control. Once ΔWRT is determined, the 14 features presented in TABLE II are extracted from the 

speed profile within the time. We conducted extensive study on the effectiveness of the window size, various drive cycles, we 

determined that ΔWRT  =50 seconds and Δtrt=1 second are an appropriate window size and prediction time interval, respectively. 

We developed a multi-layered and multi-class neural network, NN_RT&TC, for the prediction of roadway types and traffic 

congestion levels as shown in Figure 5. The performance of the neural network on the 5-fold cross validation is 95% on the 

training data and 94% on the test data. Detailed training and testing data selection, feature selection algorithms and training 

process are presented in [26]. When NN_RT&TC is used inside a vehicle to predict the roadway type and traffic congestion level 

at time tc, the vector of the 14 features is extracted from the vehicle speed during the time interval, [tc-50 seconds, tc].  

 

Figure 4. Illustration of segments of a speed profile.  The X axis represents time measured in seconds, and the Y axis represents speed measured in mph. 
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TABLE II 

 FOURTEEN FEATURES SELECTED FOR ROADWAY TYPE AND TRAFFIC CONGESTION LEVEL PREDICTION 

Name of selected features: Description 

Trip distance; S  is distance traveled between t-
RTW  and t 

Maximum speed; max(vs(t)), where vs(t) is speed and ),[ tWtt RT  

Maximum acceleration; )max( 

ta , where 

ta is acceleration and ),[ tWtt RT  

Maximum deceleration |)max(| 

ta , where 

ta is deceleration and ),[ tWtt RT  

Average speed ave(vs(t)): average of  vs(t), and ),[ tWtt RT  

Average acceleration ave(


ta ): average of 

ta  and ),[ tWtt RT  

S. D. of acceleration )var( 

ta and  ),[ tWtt RT  

Average deceleration ave( 

ta ) and ),[ tWtt RT  

% of time in speed interval 0-15 km/h P )15)(0|)((  tvtv ss
for all ),[ tWtt RT  

% of time in speed interval 15-30 km/h P )30)(15|)((  tvtv ss
 for all ),[ tWtt RT  

% of time in speed interval >110 km/h P )110)(|)(( tvtv ss
 for all ),[ tWtt RT  

% of time in deceleration interval (-10)-(-2.5) m/s2 P )5.210|(  

tt aa  for all ),[ tWtt RT  

% of time in deceleration interval (-2.5)-(-1.5) m/s2 P )5.15.2|(  

tt aa  for all ),[ tWtt RT  

Number of acceleration shifts where the acceleration is 0.5~1 m/s2 Number )0.15.0|(  

tt aa  for all ),[ tWtt RT  

                              

 

The output from NN_RT&TC is the roadway type and traffic congestion level to be used by an intelligent vehicle energy 

management algorithm to determine the optimal power distribution during time interval [tc, tc+1seconds]. Figure 6 shows an 

example of a drive cycle, LA92, labeled with the actual roadway types and traffic congestion levels for the cycle according to the 

definition of the 11 standard FS roadway types and traffic congestion levels as defined in [24]. The X axis indicates the time and 

the Y axis indicates the vehicle speed in miles per hour. The prediction results generated by the neural network NN_RT&TC are 

shown in the blue color. Notice there is a delay in the prediction for the first 50 seconds due to the need for the algorithm to have 

at least one window of data available for use in the prediction.  

The prediction results of NN_RT&TC for LA92 along with 9 other cycles from PSAT are shown in TABLE III. The 

percentages given are the prediction accuracy of the neural network calculated as follows: NNp =(Nc / N) *100
%

, where Nc is the 

number of times during the drive cycle that the neural network makes a correct prediction of the FS roadway type and traffic 

congestion level, and N is the number of predictions made by the neural network through the entire cycle. The prediction 

accuracy is high: more than 90% of time, the roadway type and traffic congestion levels are predicted correctly on all drive 

cycles. On six drive cycles, the prediction accuracy reached more than 95%.  The errors are caused by the time delay of the 

prediction, which is based on the features extracted from a window of past vehicle speed. 
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Figure 5. Neural learning for roadway types and traffic congestion levels prediction.  

 

 

  

 
Figure 6. Neural Network performance of roadway types and traffic congestion levels prediction for LA92. 

 

 

 

 

TABLE III 

 THE PREDICTION PERFORMANCES OF THE NEURAL NETWORK OVER TEST DRIVE CYCLES 
 

Drive cycles 

Neural network 
prediction 

performance: NNp 
(%) 

 

Drive cycles 

Neural network 
prediction 

performance NNp 
(%) 

UDDS 97.04 REP05 95.85 

HWFET 95.38 NY_CITY 98.72 

US06 95.09 HL07 95.96 

SC03 90.99 Unif01 94.65 

LA92 91.77 Arb02 91.63 
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B.  Neural learning for predicting driving trends 

 

The neural network NN_DT (see Figure 7), is developed for predicting the driving trend at any given time instance t. The 

driving trend is a short term action taken by the driver in the next few seconds. The NN_DT is trained on the following six 

features from the current vehicle state during the time window ),[ tWt DT : vave, vmax, vmin, ac, vst and vend,  where the first  four 

parameters are, respectively,  the average speed, maximum speed, minimum speed and average acceleration, during the time 

period ),[ tWt DT , vst is the vehicle speed at )( DTWt  , and vend  is the vehicle speed at t. We define vehicle driving trends 

into five classes shown in TABLE IV. The quantitative descriptions are used to automatically label the segments in training 

driving cycles, which are the 11 Sierra Research facility-specific driving cycles. The NN_DT algorithm is a multi-class neural 

network with 6 input nodes, one hidden layer and 5 output nodes to represent the five classes of driving trends at time interval 

DTt =1(one-step prediction). In order to decide on the optimal size of 
DTW , we experimented with various sizes on training 

and test driving cycles and the results are shown in Figure 8. The cycles used for testing the driving trend prediction were the 10 

cycles provided by the PSAT simulation system. Based on the performances on both training and test data, 
DTW =9 seconds is 

selected as a good window size to use because it gave better performances compare to the performance of  smaller window sizes 

and similar performances to the performance of  larger window sizes such as 
DTW =15, 30, 50 seconds.   

 

Figure 7: Driving Trend NN structure 

 

 

 

TABLE IV 

FIVE CLASSES OF DRIVING TRENDS 

Driving Trend 

classes 

description Quantitative description 

0 No speed sp = 0 

1 Low speed cruise      0<spave<58.65 ft/s  & 0.5<aave<0.5ft/s
2
 

2 High speed cruise spave>58.65 ft/s & 0.5<aave<0.5ft/s
2
 

3 Acceleration aave>0.5 ft/s
2
 

4 Deceleration aave<0.5 ft/s
2
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Figure 8.  Performances of driving trend prediction neural network on various window sizes. 

 

 

III.2 Machine learning of optimal energy management 

A.  Power split optimization using DP for each Facility Specific drive cycle 

We applied the DP algorithm described in Section II to every Facility Specific (FS) drive cycle, Ri, i = 1,…,11, to find the 

optimal power settings associated with those roadway types and traffic congestion levels. The algorithm requires the use of a high 

fidelity vehicle system modeling and simulation program, such as PSAT or ADVISOR. Two major steps in the algorithm require 

the use of such a simulation program. First we used the simulation program to build a model of a particular vehicle of interest. 

Second, we run the vehicle model in the simulation program to generate step-by-step system state data: Pdrive-sh(t), PL(t) and vs(t), 
 

t=1, … , N, for every FC drive cycle.  

A fuel rate matrix is generated for all possible combinations of the two control variables, battery power, Pbatt, and engine speed, 

ωeng, within the specific upper and lower bounds of Pbatt and ωeng, denoted as Pbatt_min(t) ≤ Pbatt(t) ≤ Pbatt_max(t) and ωeng_min(t) ≤ 

ωeng(t) ≤ ωeng_max(t). The fuel rate matrix, fuel_rate(Pbatt(t), ωeng(t) | Pdrive_sh(t), PL(t)), is generated for each time step t as a 

function of Pbatt(t) and ωeng(t) for the given drivetrain power Pdrive-sh(t), and the electric load power PL(t). Then the DP 

optimization program described in Section II is applied to every one of the 11 standard FS drive cycles to obtain the optimal 

sequence of the two control variables, engine speed, ωeng and battery power, Pbatt pertaining to each drive cycle. Figure 9 

summarizes the major computational steps in generating optimal operating points at every time step for every FS drive cycle. 

Figure 10 shows the optimal Pbatt and engine speed ωeng generated by the DP for the Arterial LOS CD drive cycle and 

compared with the output generated by the default controller in the Ford Escape provided by PSAT. The detailed description of 

this vehicle model will be presented at the Part II of this paper series. Table V shows the performances of DP on all 11 Sierra 

drive cycles. For the purpose of comparison, we also listed the performance of the Ford Escape controller provided by the PSAT 

simulation model on these drive cycles as well. Since we cannot control the ending SOC for the Ford Escape controller in PSAT, 
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the ending SOC values vary from cycle to cycle. In order to make a fair comparison, we re-calculated the DP fuel cost with an 

SOC correction. Specifically, we reran the Dynamic Programming process by starting at 50% SOC and forcing the DP program 

to end at the same SOC of the Ford Escape controller in PSAT.  

It is clear that the fuel savings from DP control is quite significant, ranging from 8.95% ~ 16.80%. However we need to point 

out that for in-vehicle implementation, DP cannot be used for real-time control since it requires the knowledge of the entire drive 

cycle.  Furthermore, implementation of an optimal energy management in either Ford Escape or Toyota Prius needs to be traded-

off with other vehicle attributes such as drivability, emission and OBD to make trade-offs. So DP result only serves as an upper 

bound of energy optimization in a vehicle for a given drive cycle. 

 

 
Figure. 9.  Computational steps of DP optimization in a HEV. 

 

 

 

Step 6: Run DP below subject to all constraints C(x) 

             



N

t

Lshdriveengbatt

i
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PtPttPratefueluxF
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_
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Step1:Build a vehicle model using PSAT Simulation software 

Step 8: Find optimal solutions: Optimal Pbatt(t),Optimal ωeng(t) , t=1,…N 

Step2:For each standard FS Ri drive cycle i, i = 1, …, 11 :  

 

Step 4: Set the Pbatt and ωeng boundaries by incorporating with engine and battery constraints 

Step 5: Generate Fuel Matrix fuel_rate
i
(Pbatt(t), ωeng(t)| Pdrive_sh(t), PL(t))

 
,   

            where Pbatt_min(t) ≤ Pbatt(t) ≤Pbatt_max(t),  

                      ωeng_min(t) ≤ ωeng(t) ≤ ωeng_max(t) ,  t=1,… ,N 

Step 3: Generate driving info data on Ri with the vehicle model using PSAT 

vehicle model 

Ri 

Pdrive_sh(t), PL(t), vs(t),
 
t=1,… ,N 

 

Pbatt_min(t) and Pbatt_max(t), 

ωeng_min(t) and ωeng_max(t) 

 

fuel_rate
i
(Pbatt(t), ωeng(t)| Pdrive_sh(t), PL(t)),

 
t=1,… ,N 
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Figure 10.  DP results with Ford Escape model in PSAT for Arterial LOS CD cycle. 

 

 

 

TABLE V 

PERFORMANCE OF DP OPTIMIZATION ON THE 11 SIERRA DRIVE CYCLES 

Cycle Cycle Time(s) Fuel Consumption (g) Saving by DP (%) 

DP Ford Escape 

Freeway LOS A: R1 400 747.99 895.64 16.48 

Freeway LOS B: R2 367 655.11 778.23 15.82 

Freeway LOS C: R3 449 795.40 947.02 16.01 

Freeway LOS D: R4 434 737.74 884.63 16.60 

Freeway LOS E: R5 472 619.80 744.98 16.80 

Freeway LOS F: R6 537 302.62 350.84 13.74 

Freeway Ramps: R7 270 198.16 237.98 16.73 

Arterials LOS A-B: R8 738 329.72 381.83 13.65 

Arterials LOS C-D: R9 630 229.45 262.57 12.61 

Arterials LOS E-F: R10 504 131.32 147.24 10.81 

Local : R11 526 133.63 146.75 8.95 

 

 

B. Neural network training of optimal power solutions for Facility Specific drive cycles 

Two sets of neural networks ( ,i

Pbat
NN i

eng
NN

) have been developed to learn the optimal power split generated by the Dynamic 

Programming for each of the 11 roadway types and traffic congestion levels, Ri, i=1,…,11. The neural network, i

Pbat
NN

 
predicts 

Pbatt, the optimal battery power, and the neural network, and i

eng
NN

predicts the optimal engine speed ωeng for the roadway type 

and traffic congestion level Ri.  The input variables to i

Pbat
NN  are  vs (t), Pdrive-sh(t), DT(t), and SOC(t),  where vs (t) is the vehicle 

speed, Pdrive_sh(t) is the driver’s power demand, DT(t) is the driving trend, and SOC(t) is the state of charge of the battery. DT(t) 
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can take one of the five states: no speed, low speed cruise, high speed cruise, acceleration and deceleration.  The input variables 

to i

eng
NN

 are  vs (t),  Pdrive-sh(t),  and SOC(t).   

Figure 11 shows the architecture of the two neural networks, i

Pbat
NN  and 

i

eng
NN

.  For each standard FS drive cycle, Ri, i = 1, 

…, 11, the training data, Ωi, for the two neural networks are generated by the procedure described in the last subsection. Here Ωi 

= { )(tv i

s
, )(tPi

shdrive
, )(tDT i , )(tSOC i ,  )(tP i

b a tt
 , )(ti

eng  | t = 1, …N
i
}, where )(tv i

s
, )(tPi

shdrive
, )(tDT i , )(tSOC i  are the vehicle 

speed, driver power demand, driving trend and battery state of charge at time t respectively, and )(tP i

batt
, )(ti

eng
 
are the optimal 

battery power and engine speed settings generated by the DP algorithm at time t for drive cycle Ri.  The variable N
i
 is the length 

of Ri.  The neural networks as trained for different FS drive cycles can have different numbers of hidden nodes.  The Performance 

of the NN training is measured by Mean Squared Errors (MSE) defined as:         

MSE= 2

1

))()((
1

ttartoutput
N

N

t




 ,                                          (19) 

where output(t) is the NN output and tar(t) is the truth target value. Table VI shows the performance table in terms of MSE of the 

neural networks i

Pbat
NN   and i

eng
NN  as compared to the DP data for each of 11 Sierra FS cycles, Ri, i=1,..,11. 

                      

 

 

Figure 11. The energy management neural networks, i

Pbat
NN  and 

i

eng
NN

 for Sierra FS cycle Ri, i=1,..,11. 
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Figure 12.  Comparison of optimal engine speed and battery power generated by the neural networks and DP for Freeway LOS C. 

 

 

 

 

TABLE VI. 

PERFORMANCE OF NEURAL NETWORKS TRAINED FOR INTELLIGENT ENERGY MANAGEMENT 

Cycle NNPbatt  (MSE) NNweng  (MSE) 

 

Cycle NNPbatt (MSE) NNweng (MSE) 

Freeway LOS A 
 

0.0012 

 

0.0009 Ramp 0.0004 0.0009 

Freeway LOS B 
 

0.0015 

 

0.0012 Local 0.0004 0.0002 

Freeway LOS C 0.0012 0.0006 Arterial LOS AB 0.0007 0.0007 

Freeway LOS D 0.0008 0.0006  Arterial LOS CD 0.0005 0.0003 

Freeway LOS E 0.0011 0.0007  Arterial LOS EF 0.0007 0.0006 

Freeway LOS F 0.0007 0.0005  All 11 cycles 0.0013 0.0008 

 

 

 

Figure 12 shows the battery power, Pbatt, (top graph) and engine speed, ωeng, (bottom graph) generated by the trained neural 

networks and DP on a R3 drive cycle, i.e. Freeway LOS C.  It can be observed that the results generated by the neural networks 

are very close to the results generated by DP, which is an optimal algorithm, but cannot be implemented for real-time operation. 

In the Part II of this paper series, we will present an intelligent energy controller that uses, in real-time, the NN_RT&TC to 

predict the current roadway type and traffic congestion level, NN_DT to predict the driving trend, and then, assume the predicted 

roadway type is Ri, use the two energy control neural networks, i

Pbat
NN   and i

eng
NN

 trained for the roadway type Ri to generate 

the optimal battery power and engine speed, throughout the drive cycle. 
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IV. CONCLUSION 

We presented a machine learning framework, ML_EMO_HEV, for the optimization of energy management in an HEV.  This 

framework includes machine learning algorithms for predicting roadway types and traffic congestion levels and driving trends 

and then using these predicted values in another algorithm that learns optimal energy settings based on the predicted roadway 

types and traffic congestion levels and driving trends. The neural network, NN_RT&TC, was designed and trained for the 

prediction of roadway types and traffic congestion levels.  It is a multi-class neural network trained to predict which of the 11 

standard FS drive cycles the current roadway type and traffic congestion level belongs to.  Its performance on 10 test drive cycles 

has accuracy within the range of 91.6% and 98.7%.   The neural network that predicts the driving trend, NN_DT, predicts one of 

five classes of driving trend:  no speed, low speed cruise, high speed cruise, acceleration and deceleration.  Its performance for a 

9 second window is approximately 94% in accuracy for both training and test data.   For each of the 11 Sierra FS drive cycles, 

two neural networks were trained, one to emulate the optimal engine speed generated by DP and the other the optimal battery 

power.  The performance of the neural networks for generating the optimal engine speed over all 11 roadway types and traffic 

congestion levels have an MSE ranging between 0.0002 and 0.0012. The neural networks for generating the optimal battery 

power have an MSE ranging between 0.0004 and 0.0015.   In the second paper in the series, we will present an intelligent online 

power controller developed under ML_EMO_HEV, and its performances in a target vehicle under various training conditions and 

drive cycles.  
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